Anatomy, physiology, and synaptic responses of rat layer V auditory cortical cells and effects of intracellular GABA(A) blockade.
نویسندگان
چکیده
The varied extracortical targets of layer V make it an important site for cortical processing and output, which may be regulated by differences in the pyramidal neurons found there. Two populations of projection neurons, regular spiking (RS) and intrinsic bursting (IB), have been identified in layer V of some sensory cortices, and differences in their inhibitory inputs have been indirectly demonstrated. In this report, IB and RS cells were identified in rat auditory cortical slices, and differences in thalamocortical inhibition reaching RS and IB cells were demonstrated directly using intracellular GABA(A) blockers. Thalamocortical synaptic input to RS cells was always a combination of excitation and both GABA(A) and GABA(B) inhibition. Stimulation seldom triggered a suprathreshold response. IB cell synaptic responses were mostly excitatory, and stimulation usually triggered action potentials. This apparent difference was confirmed directly using intracellular chloride channel blockers. Before intracellular diffusion, synaptic responses were stable and similar to control conditions. Subsequently, GABA(A) was blocked, revealing a cell's total excitatory input. On GABA(A) blockade, RS cells responded to synaptic stimulation with large, suprathreshold excitatory events, indicating that excitation, while always present in these cells, is masked by GABA(A). In IB cells that had visible GABA(A) input, it often masked an excitatory postsynaptic potential (EPSP) that could lead to additional suprathreshold events. These findings indicate that IB cells receive less GABA(A)-mediated inhibitory input and are able to spike or burst in response to thalamocortical synaptic stimulation far more readily than RS cells. Such differences may have implications for the influence each cell type exerts on its postsynaptic targets.
منابع مشابه
(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملNoradrenergic System Increases Miniature Excitatory Synaptic Currents in the Barrel Cortex
Introduction: Neurons in layer II and III of the somatosensory cortex in rats show high frequency (33 ± 13 Hz) of miniature excitatory postsynaptic currents (mEPSCs) that their rates and amplitudes are independent of sodium channels. There are some changes in these currents in neurodegenerative and psychological disorders. Regarding to well known roles of the neuromodulatory brain systems in...
متن کاملEffect of phasic electrical locus coeruleus stimulation on inhibitory and excitatory receptive fields of layer V barrel cortex neurons in male rat
Introduction: It is believed that Locus Coeruleus (LC) influences the sensory information processing. However, its role in cortical surround inhibitory mechanism is not understood. In this experiment, using controlled mechanical displacement of whiskers we investigated the effect of phasic electrical stimulation of LC on response of layer V barrel cortical neurons in anesthetized rat. Methods: ...
متن کاملThe interaction of GABA and glutamate on the cardiovascular responses of horizon tal limb of diagonal band of Broca (hDB)
Introduction: We previously shown that microinjection of glutamate into the hDB of rat elicited cardiovascular depressive responses. Microinjection of AP5 (an NMDA receptor antagonist, 2.5 mM, 50 nl) and CNQX (an AMPA receptor antagonist, 1 mM, 50 nl) caused no significant changes in the blood pressure and heart rate. Microinjection of bicuculline (BMI: a GABAA receptor antagonist, 1 mM, 50...
متن کاملEvaluation of GABA Receptors of Ventral Tegmental Area in Cardiovascular Responses in Rat
Background: The ventral tegmental area (VTA) is well known for its role in cardiovascular control. It is demonstrated that about 20-30% of the VTA neurons are GABAergic though their role in cardiovascular control is not yet understood. This study is carried out to find the effects of GABA A and GABA B receptors on cardiovascular response of the VTA. Methods: Experiments were performed on uretha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 83 5 شماره
صفحات -
تاریخ انتشار 2000